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Fig. 5. Effective index of refraction versus angle of the microstrip with ¢,

=96,¢,=104,¢6;, =82,b=12.7mm, b, = 0.5 mm, h, = 12.2 mm,

w = 0.5mm, and f = 30 GHz. (A) u,, = pyy, = p; = 1.0, B) p,, = pu,

= 1.0 and g, = 1.6, and (C) p,, = 1.0, p,, = 1.6, and p,, = 1.8.

and [u] are shown in Fig. 5. The physical dimensions of the guid-
ing structure are the same as those used in earlier microstrip line
studies, with the permittivity tensor parameters chosen to be ¢, =
9.6, ¢; = 10.4, and ¢; = 8.2. Dispersion curves A, B, and C show
-that by changing the material from being magnetically isotropic to
magnetically biaxial can increase the effective index of refraction
considerably, particularly by varying the p,, element.

IV. CONCLUSION

An analysis based on the spectral-domain method was applied to
study the effects of misalignment between the principal axes of the
substrate and those of the waveguide on the dispersive properties
of grounded slotlines, microstrips, and edge coupled lines printed
on anisotropic substrates. The newly derived expression for the
Green’s function is written explicitly in terms of both [e] and [ x]
tensor elements, with the off-diagonal elements of the permittivity
also included in the formulation. The dispersion characteristics of
these transmission lines are examined when they are printed on
dielectrically biaxial substrates. Numerous results are provided for
different medium parameters for frequencies up to 40.0 GHz when
angles of axes rotation of the permittivity tensor change from 0°
to 90°. Also, the variation in the index of refraction is examined
for a microstrip line printed on a substrate which is characterized
simultaneously by both its permittivity and permeability tensors. It
is observed that misalignment effects on the dispersion properties
of MIC’s cannot be ignored, even at the lower frequencies for some
anisotropic substrate materials.
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Analysis of an Infinite Array of Rectangular
Anisotropic Dielectric Waveguides Using the
Finite-Difference Method

Carlos Lednidas da Silva Souza Sobrinho and Attilio José€ Giarola

Abstract—The finite-difference method is used in the analysis of the
propagation characteristics of an infinite array of rectangular dielec-
tric waveguides. Particular attention is devoted to the mode coupling
analysis and a comparison with results from an integral equation
method is presented. The wave equation is solved in terms of the trans-
verse components of the magnetic field, resulting in an eigenvalue
problem with the elimination of spurious modes. The formulation is
general and may be applied to the solution of other problems, including
those with anisotropic dielectrics and with a continuous variation of
the index of refraction profile in the wavegide cross section.

I. INTRODUCTION

The practical application of dielectric waveguide in millimeter-
wave and optical integrated circuits depends critically on the prop-
agation characteristics of these waveguides. For this reason, there
has been increased interest in methods of determining these char-
acteristics for practical dielectric waveguiding structures. The
point-matching method was used to analyze the two-layer rectan-
gular cross section waveguide [1]. The use of the finite-element
method became aftractive after the elimination of the spurious
modes [2] and because of its potential of solving nonhomogeneous
and anisotropic waveguides [3], [4]. The elimination of the spu-
rious modes of the finite-difference method has also enhanced the
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interest of using this method for solving dielectric waveguides.
Bierwirth ez al. [5] and Schulz et al. [6], by solving the wave equa-
tion in terms of the transverse components of the magnetic field,
were able to obtain solutions with the exclusion of spurious modes.
While the analysis developed by Bierwirth ez al. [5] was applicable
to dielectric waveguides having refractive step index profiles in their
cross sections, Schulz er al. [6] have extended the analysis to in-
clude waveguide with graded-index profiles. In their analysis,
however, they have assumed isotropic dielectrics.

One of the objectives of this paper is to extend these previous
analyses to include dielectric anisotropy. The formulation is de-
veloped for cylindrical dielectric waveguide structures with an ar-
bitrarily varying index of refraction profile over their entire cross
sections. The analysis is general and is applicable to biaxial an-
isotropic dielectrics. The magnetic permeability is assumed to be
constant and equal to the free-space value (u = p,).

In this analysis, the vector wave equation is solved in terms of
the transverse magnetic field components, H, and H,, such that the
spurious modes are eliminated by an implicit inclusion of the con-
dition that the divergence of the magnetic field has to be equal to
zero (V - H = 0) [5], [6].

This wave equation is solved numerically by using the finite-
difference method for each of the four regions of the five-point
mesh shown in Fig. 1, by taking into account the boundary con-
ditions existing in the interface of regions 1, 2, 3, and 4, as well
as in the boundaries that limit the waveguide region. The problem
is reduced to a conventional eigenvalue problem.

The use of a graded mesh, as shown in Fig. 2, allows an im-
provement in the precision of the calculated results without in-
creasing the number of mesh points. This is done by using a more
refined discretization in the most critical regions with a compro-
mise in the regions where there is a more regular behavior.

The boundaries that limit the waveguide region, as shown in Fig.
2, should be positioned far enough away in order not to perturbe
the results desired for the unbounded case. However, by setting
near ¢lectric or magnetic boundaries we may be able to investigate
the coupled modes of an infinite array of dielectric waveguides.
Numerical results were compared with those obtained by Yang et
al. [7} using an integral equation analysis.

II. THEORY

General anisotropic dielectrics will be considered in the analysis.
However, they will be oriented in such a way that the optical axes
coincide with the x, y and z coordinate directions shown in Fig. 2.
Thus, for nonuniform biaxial anisotropic dielectric, the permittiv-
ity tensor is diagonal, with components ¢, (x, y), & {(x, y) and ¢, (x,
¥) with a magnetic permeability equal to that of free space, p =
.- The fields are assumed to have a harmonic time dependence of
the type exp (jwt) and to propagate along the z direction with a z
dependence given by exp (—v,z), where w the angular frequency
and v, is the propagation constant.

The vector wave equation, describing the wave propagation along
a cylindrical waveguide with a nonhomogeneous cross section and
anisotropic dielectric material, may be obtained from Maxwell’s
equations, resulting:

—[l7'VPH + [V(l ™) X (V x H) = o*pyH. (1)

In order to simplify the solution of the problem, the vector wave
equation (1) may be written in terms of the transverse components
of the magnetic field, H, and H,, such that the problem may be
transformed into a conventional eigenvalue problem. As a result,
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Fig. 2. Graded mesh of the finite-difference representation.

the following coupled wave equations are obtained:

€ (x,y) 8% 3* €0, y) — e x,y) 87
e X T H 4+ -5 H, +
€0, y) 8?2’ T  3r2 T €, {x, y) T da "
€ y) 3 {i _2 }
€2(x, y) da &) ar He da H,
+ Iikg Ea(xa Y) + ,Ygi' Hr = 0’ (2)

where o = x when 7 = y'and @ = y when 7 = x, ¢, is the free-
space permittivity and k, = w+p,e, is the free-space wave-
number.

In order to eliminate the spurious modes, the divergence of the
magnetic field equal to zero (V - H = 0) was included in the for-
mulation of (1) and in the calculation of the longitudinal compo-
nent of the magnetic field [5], [6]:

1(0 ad
H, ” L,)x H, + P Hy}, 3)
which was used to satisfy one of the boundary conditions.

In order to develop the finite-difference method, a graded mesh
of points is drawn in the waveguide cross section as shown in Fig.
2. Thus, a generic point P, is distant from its four neighbor points
to the north, south, east or west by n, s, e, or w, respectively, as
shown in Fig. 1. The coupled equations (2) are used to write the
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field equations around any one of the points P;, two for each region
1, 2, 3, and 4, as shown in Fig. 1. These eight equations are sum-
marized in the following expression:

0= my, My, €o [ m ez.r]] H
= T/ M, — - T My oM,
m;, T omg €y 2¢;; T
m,, €y €zrj My
+[ﬂ—<1imq,— + H,
Mg, € 2¢,; My
—mm [w?ne, + v21H,
2 My Mg |07 p€ 4, vzl ap
€y € — &y
+ [+m — € £ — | H,
Liftgr 2 Sy L ™,
2e3; 4e,, “
€ — €y €y€ui € ™ €y
+ H, +|+m + — 1 H,
qr qr 2+ 7
46ZJ’ 2611 261‘,'
+my 2 H, + myH
T My — o1 = mqr aayr
€y 4
where
M, = W, € mg =n,s; My,=W,E, M,=N,S§,
for « when 7 = y and m;, = n, s; My, = w, €;
M, =N,S, M, =W,E;fora =ywhenr = x.
de oH
2 o o . .
€ = = ; ;= —; ;o — withj=1,2,3,4
21f ar }’ aTf ar j’ oo dux ; J 3 Ly Iy

representing regions 1, 2, 3, and 4, shown in Fig. 1, respectively;
i and g correspond to the following values: (i, ¢) = (1, 1), (1, 2),
2,2), 2, ) withw = xwhen7 =yand ({, ¢) = (1, 1), 2, 1),
2, 2), (1, 2) with @« = y when 7 = x, for regions 1, 2, 3, and 4
(Fig. 1), respectively.

At the interface between the four regions of the graded mesh of
five points, as shown in Fig. 1, the boundary conditions that re-
quire the continuity of the longitudinal components of the electric
field, E,, and of the magnetic field, H,, are then imposed. From
these conditions we obtain relations between the derivatives of the
transverse components of the magnetic field, H, and H,. From the
various sets of possible relations [5] we have chosen for H,, the
fOllOWil’lg: Ezl = Ez2a Ez3 = Ez4’ Hzl = Hz » Hz3 = b{z4s Hzl = Hz4
and for H, we have chosen: E,; = E,, E,, = Ej, H,y = Hy,
H, = Hy, H;, = H,. As a result, similar expressions as those
given by Bierwirth et al. [5] are obtained.

The set of coupled equations (4), along with this set of relations
lead to the desired solution of the wave equation. After some ma-
nipulation of this set of equations, the following coupled equations
are obtained:

i=W,EN,S Al + ,=W§~‘N,SB"HY" +4,H, + B,H,,

+ Ay Hy + v2B, Hy, = 0, ®)
i=W,ZE,N,s Gy + ,=W,ZE’N,S DH, + D,H, + GH,

+ v:D, H, + v1C, H, =0, 6

where the coefficients 4;, B;, C;, D; i = W, E, N, §), 4,, 4,,, B,
B, Cy, C,y, D, and D, are expressions given in terms of geo-

- metrical parameters and the electromagnetic parameters of the di-
electric media.
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The equations (5) and (6) may be uncoupled in terms of 'Y%pr
and y%H,,. The result is

i=W§,N’SD"HX,' + i=W,ZE,N,S C'H, + D’H, + C’H,, = —y2H,,
‘ )
i=W§’N7sA"Hx,~ + z=W§,N‘S B'H, + A’H, + BPH,, = —y2H,,
(8)
where
A' = (4,C,, — D;B,,)/D; B'= (B,C,, — CiB,,)/D;
AP = (4,C,, — D,B,,)/D; B’ = (B,,C'm - C,B,,)/D;
D' = (Di4,, — 4:D,,)/D; C' = (CiA,, — B.D,,)/D;
D? = (D,4,, — 4,D,,)/D; C* = (C,A,, — B,D,,)/D;
D = 4,,C,, — D,,B,,. ©)

Note that, for the graded mesh of Fig. 2 containing N points, there
should be N unknowns H,, and N unknowns H,,, one for each point
P of the mesh. On the other hand, we may write one equation (7)
and one equation (8) for each mesh point, such that a total of 2N -
equations will result from the use of (7) and (8) in the entire mesh.

.We have therefore an equal number of equations and unknowns.

Obviously, in order to be able to solve the numerical problem, N
has to be a finite number. This may be accomplished by confining
the cross section of the waveguide within electric or magnetic walls.

After defining the graded mesh of points of Fig. 2 and chosen
the walls that limit the waveguide cross section, (7) and (8) may
be invoked at each mesh point, using the proper boundary condi-
tions at the electric and/or magnetic walls. A system of linear ho-
mogeneous equations results that may be written as a conventional
eigenvalue problem [5], [6]:

{4 - NUIX) =0, (10)
where A = —v2, (U) is the unit matrix, (X) is the eigenvector, and
(A) is a square matrix with coefficients a, ,, b, ;, ¢, , and d, ,.

The eigenvalues N and the eigenvectors (X) may be obtained
using the Eispack program [5].

II. REesuLTS

The formulation presented here is used in the analysis of the
propagation characteristics of an infinite array of rectangular di-
electric waveguides having a cross section as shown in Fig. 3. Note
that each rectangular dielectric waveguide has dimensions a and b,
with a relative dielectric permittivity ¢, and a magnetic permeabil-
ity, u,. For an anisotropic dielectric, €, is a tensor quantity. The
medium that surrounds the rectangular dielectric waveguides is a
dielectric with a relative dielectric permittivity, €,, and a magnetic
permeability, u,. Due to the periodicity of the structure it is suffi-
cient that only one cell of the array be examined. This cell is shown
in Fig. 3 with sides 4 and B. Note, in addition, this cell has sym-
metry with respect to the 2-3. and 3-4 axes. Therefore, only the
cell delimited by the points 1-2-3-4 has to be examined, with the
appropriate choice of electric or magnetic walls at the edges of this
cell. Depending on the choice of the walls along 2-3 and 3-4, four
mode groups may be formed. The first group is defined as the one
with an electric wall along 2-3 and a magnetic wall along 3-4. The
second and third-groups have only electric and only magnetic walls,
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Fig. 3. Cross section of an infinite array of rectangular dielectric
waveguides.
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Fig. 4. Normalized phase constant of the first five modes of the first group,
as a function of frequency. Also shown are results obtained by Yang ez al.
[7]. ¢, = 1.0, ¢, = 2.25,a = 2.324 cm, b = 1.162 cm, A = 6.0 cm and
B =30cm.

respectively. The fourth group is obtained by exchanging the elec-
tric and magnetic walls of the first group [7].

The normalized phase constants as a function of frequency, ex-
pressed in GHz, are shown in Figs. 4 and 5 for the first and fourth
groups, respectively. For both cases, isotropic dielectrics were
used, with €; = 1.0 and ¢, = 2.25 and the dimensions were chosen
asa =2.324cm,b =1.162cm, A =6.0cmand B = 3.0 cm [7].
The first five modes are shown with solid lines. Results obtained
by Yang et al. [7] using the integral equation method are also shown
. with dots. Note the agreement observed with the comparison of

both results.

In order to examine the effect of dielectric anisotropy, the rect-
angular dielectric waveguides with e, = 2.19 were replaced by
uniaxial anisotropic dielectrics with the optical axis along the
y-direction. For one case we have chosen ¢, = ¢, = 2.31 and
€, = 2.19 and for the other case, €., = ¢, = 2.19 and €y = 2.31.
The results are shown in Fig. 6. Note that, for €y = 2.31 (aster-
isks), the results almost coincide with those for e, = 2.19 (solid
line). For e,, = 2.19 (dotted line) the normalized phase constants
are slightly higher than those for e, = 2.19. Not shown in Fig. 6
are the results that were calculated for the optical axis along the x
direction and with e;, = ¢, = 2.19 and ¢, = 2.31. These results

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL 40, NO. 5, MAY 1992

TTTTITTT

o
[6)]
Iltillllllllllllllll

00

| SO IS B N A B SR

5 10 15 20
Frequency in GHz

I S |

O

Fig. 5. Same as in Fig. 4, for the fourth group instead of the first group.
Also shown are results obtained by Yang et al. [7].
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Fig. 6. Normalized phase constant of the first two modes of the first group,
as a function of frequency for: (a) isotropic dielectric waveguides with
e. = 2.19 (solid line); (b) anisotropic dielectric waveguides with ¢, . =
2.31 and €., = 2.19 (dotted line); and (c) anisotropic dielectric waveguides
with ., . = 2.19 and €., = 2.31 (asterisks). ¢, = 1.0, a = 2.324 cm, b
=1.162¢cm, 4 = 6.0 cm and B = 3.0 cm.

o7

were very similar to those calculated for ¢, =
€y = 2.19.

€, = 2.31 and

IV. CoNCLUSION
i

The dispersion characteristics of an infinite array of rectangular
dielectric waveguides, using isotropic or anisotropic dielectrics
were examined using the finite-difference method. In the formula-
tion the vector wave equation, written in terms of the transverse
components of the magnetic field, is reduced to a conventional ei-
genvalue problem. The elimination of spurious modes is accom-
plished by including the condition that the divergence of the mag-
netic field is equal to zero. The results obtained for isotropic
dielectrics were compared with those obtained using the integral
equation method and good agreement was observed for the first five
modes.
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Analysis of Coupling in Image Guide Technology
D. L. Paul, M. Habibi, J. Castrillo, Ph. Gelin, and S. Toutain

Abstract—Coupling for symmetrical and asymmetrical structures in
image guide technology is described. Starting from Trinh and Mittra’s
analysis, we propose some improvements for treating strong coupling
between an image guide and a ring resonator of any radius of curva-
ture, by taking into account the field displacement effect, and for a
nonsymmetric coupler, the difference between the propagation con-
stants of the straight and curved image guides. A comparison between
this analysis and Trinh and Mittra’s experiments has been made.

I. INTRODUCTION

In recent years, greater interest has been paid to millimeter-wave
dielectric propagation media for use both in active and passive de-
vices [1]. Derived from guides widely used in optics, these struc-
tures are indeed well suited to high frequency bands. When asso-
ciated with dielectric ring resonators, dielectric waveguides are
especially suitable for the modelling of filters [2]. In order to de-
sign filters in image guide technology at millimeter wavelengths,
it is necessary to characterize accurately the coupling between basic
elements.

This paper presents numerous improvements which can be ap-
plied to the analysis proposed by Trinh and Mittra for symmetric
and nonsymmetric couplers [3] and which are able to predict both
the amplitude and the phase of the scattering parameters without
any restrictive assumption. To do this, the analysis takes into ac-
count not only the shift of the electromagnetic field due to the cur-
vature of the guide but also, in the case of nonsymmetric couplers,
the difference in the propagation constants between curved and
straight guides. A slight concordance is observed between our the-
ory and Trinh and Mittra’s experimental results.
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Fig. 1. Scattering coefficients in the case of a symmetric coupler.

II. TRINH AND MITTRA’S ANALYSIS

In the case of a symmetric coupler (Fig. 1), this approach is able
to predict scattering coeflicients with quite satisfactory accuracy.
Their theory is based on three assumptions:

a) The authors assume the radius R to be large enough compared
to the wavelength, to neglect the field displacement in the curved
structures [4] and approximate the phase constant in this section by
the one obtained in a straight section.

b) They use the generalized EDC method (Effective Dielectric
Constant) to obtain both the phase constant of the single image
guide fundamental mode and the even and odd phase constants of
coupled image guides.

¢) They suppose that the coupling is weak. From a mathematical
point of view, this assumption permits the use of analytical asymp-
totic equations to derive the even and odd phase constants of the
coupler.

To analyze the validity of these hypotheses, we plotted (Fig. 1)
the S-parameters versus the spacing between guides for each com-
bination of the techniques available, i.e., for both strong (resolu-
tion of Knox and Toulios’s transcendental equations [5]) and weak
coupling. This figure shows that the results may be very different
according to the technique chosen (EDC [5] or generalized EDC
method [3]) and that paradoxically Trinh and Mittra’s experiments
and theoretical results (curve 4, Fig. 1) agree well for strong cou-
pling where the asymptotic equations are not valid.

When applied to a nonsymmetric coupler, the main drawback of
Trinh and Mittra’s model lies in the necessity of introducing a cor-
rection factor into the calculations to model the phase constant dif-

- ference between straight and curved guides.

Concluding Remark: If the assumption of ‘‘weak coupling’” in
Knox and Toulios’s transcendental equations leads to fairly good
results concerning symmetric couplers, this may not be significant.
Indeed, the excess of coupling obtained when the distance between
guides is supposed to be infinite may make up for the omission of
the shift of the maximum field amplitude towards the outside of the
guide observed in curved structures [4].

Thus, it seems more realistic to take into account this physical
phenomenon without assuming a weak coupling approximation and,
in the case of nonsymmetric couplers, the difference in propagation
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