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Fig. 5. Effective index of refraction versus angle of the microstrip with Cl

= 9.6, Cz = 10.4, es = 8.2, b = 12.7 mm, hl = 0.5 mm, h, = 12.2 mm,
w = ().5 ~m, and~ = 30 GH-z, (A) p= = ~YY = pz = 1,(), (B) p=X = p,,

= 1.0 and p,, = 1.6, and (C) K.. = 1.0, p,, = 1.6, and pZZ = 1.8.

and [p] are shown in Fig. 5. The physical dimensions of the guid-

ing structure are the same as those used in earlier rnicrostrip’ line

studies, with the perrnittivity tensor parameters chosen to be c, =

9.6, q = 10.4, and q = 8.2. Dispersion curves A, B, and C show

~that by changing the material from being magnetically isotropic to

magnetically biaxial can increase the effective index of refraction

considerably, particularly by varying the pYYelement.

IV. CONCLUSION

An analysis based on the spectral-domain method was applied to

study the effects of misalignment between the principal axes of the

substrate and those of the waveguide on the dispersive properties

of grounded slotlines, microstrips, and edge coupled lines printed

on anisotropic substrates. The newly derived expression for the

Green’s function is written explicitly in terms of both [c] and [~]

tensor elements, with the off-diagonal elements of the permittivity

also included in the formulation. The dispersion characteristics of

these transmission lines are examined when they are printed on

dielectrically biaxial substrates. Numerous results are provided for

different medium parameters for frequencies up to 40.0 GHz when

angles of axes rotation of the permittivity tensor change from 00

to 90°. Also, the variation in the index of refraction is examined

for a microstrip line printed on a substrate which is characterized

simultaneously by both its pertnittivity and permeability tensors. It

is observed that misalignment effects on the dispersion properties

of MIC’s cannot be ignored, even at the lower frequencies for some

anisotropic substrate materials.
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Analysis of an Infinite Array of Rectangular
Anisotra)pic Dielectric Waveguides Using the

Finite-Difference Method

Carlos Le6nidas da Silva Souza Sobrinho and Attilio Jost5 Giarola

Abstract—The finite-difference method is nsed in the analysis of the

propagation characteristics of an infinite array of rectangular dielec-

tric waveguides. Particular attention is devoted to the mode coupling
analysis and a comparison with results from an integral equation
method is presented. The wave, equation is solved in terms of the trans-
verse components of the magnetic field, resulting in an eigenvalue
problem with the elimination of spurious modes. The formulation is
general and may be applied to the solution of other problems, including

those with anisotropic dielectrics and with a continuous variation of
the index of refraction profile in the wavegide cross section.

I. INTRODUCTION

The practical application of dielectric waveguide in millimeter-

wave and opticad integrated circuits depends critically on the prop-

agation characteristics of these waveguides. For this reason, there

has been increased interest in methods of determining these char-

acteristics for practical dielectric waveguiding structures. The

point-matching method was used to analyze the two-layer rectan-

gular cross section waveguide [1]. The use of the finite-element

method became attractive after the elimination of the spurious

modes [2] and because of its potential of solving nonhomogeneous

and anisotropic waveguides [3], [4]. The elimination of the spu-

rious modes of the finite-difference method has also enhanced the
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interest of using this method for solving dielectric waveguides.

Bierwirth et al. [5] and Schulz et al, [6], by solving the wave equa-

tion in terms of the transverse components of the magnetic field,

were able to obtain solutions with the exclusion of spurious modes.

While the analysis developed by Bierwirth et al. [5] was applicable

to dielectric waveguides having refractive step index profiles in their

cross sections, Schulz et al. [6] have extended the analysis to in-

clude waveguide with graded-index profiles. In their analysis,

however, they have assumed isotropic dielectrics.

One of the objectives of this paper is to extend these previous

analyses to include dielectric anisotropy. The formulation is de-

veloped for cylindrical dielectric waveguide structures with an ar-

bitrarily varying index of refraction profile over their entire cross

sections. The analysis is general and is applicable to biaxial an-

isotropic dielectrics. The magnetic permeability is assumed to be

constant and equal to the free-space value (y = WO).

In this analysis, the vector wave equation is solved in terms of

the transverse magnetic field components, H, and HY, such that the

spurious modes are eliminated by an implicit inclusion of the con-

dition that the divergence of the magnetic field has to be equal to

zero(V . R = O) [5], [6].

This wave equation is solved numerically by using the finite-

difference method for each of the four regions of the five-point

mesh shown in Fig. 1, by taking into account the boundary con-

ditions existing in the interface of regions 1, 2, 3, and 4, as well

as in the boundaries that limit the waveguide region. The problem

is reduced to a conventional eigenvalue problem.

The use of a graded mesh, as shown in Fig. 2, allows an im-

provement in the precision of the calculated results without in-

creasing the number of mesh points. This is done by using a more

refined discretization in the most critical regions with a compro-

mise in the regions where there is a more regular behavior.

The boundaries that limit the waveguide region, as shown in Fig.

2, should be positioned far enough away in order not to perturbe

the results desired for the unbounded case. However, by setting

near electric or magnetic boundaries we may be able to investigate

the coupled modes of an infinite array of dielectric waveguides.

Numerical results were compared with those obtained by Yang et

al, [7] using an integral equation analysis.

II. THEORY

General anisotropic dielectrics will be considered in the analysis.

However, they will be oriented in such a way that the optical axes

coincide with the x, y and z coordinate directions shown in Fig. 2.

Thus, for nonuniform biaxial anisotropic dielectric, the permittiv-

ity tensor is diagonal, with components CX(x, y), eY (x, y) and cZ(x,

y) with a magnetic permeability equal to that of free space, p =

PO. The fields are assumed to have a harmonic time dependence of

the type exp (jot) and to propagate along the z direction with a z

dependence given by exp ( –-yZZ), where u the angular frequency

and ~Z is the propagation constant.

The vector wave equation, describing the wave propagation along

a cylindrical waveguide with a nonhomogeneous cross section and

anisotropic dielectric material, may be obtained from Maxwell’s

equations, resulting:

–[C]-IV2E + [v([e]-l)] x (v x E) = co2,u17. (1)

In order to simplify the solution of the problem, the vector wave

equation (1) may be written in terms of the transverse components

of the magnetic field, HX and HY, such that the problem may be

transformed into a conventional eigenvalue problem. As a result,

w - w e E
P

po, &2 ~ p., es

(2) (3)

s
Fig. 1. Graded mesh of the five-point representation.

electric or

4Y
magnet> wall

ele

magnetic wall

Fig. 2. Graded mesh of the finite-difference representation.

the following coupled wave equations are obtained:

ea(x, y) 132 az ~Z(X, y) – ~a(x, y) az H
—THr+~H, +
ez(x, y) aa ar Cz(x, y) aT aa “

[

+ ~z ea(x, y) 1+y:H, =O,0
E.

(2)

where a = x when r = y ‘and a = y when T = x, CO is the free-

space permittivity and k. = a& is the free-space wave-

number.

In order to eliminate the spurious modes, the divergence of the

magnetic field equal to zero ( V o ~ = O) was included in the for-

mulation of (1) and in the calculation of the longitudinal compo-

nent of the magnetic field [5], [6]:

(3)

which was used to satisfy one of the bounda~ conditions.

In order to develop the finite-difference method, a graded mesh

of points is drawn in the waveguide cross section as shown in Fig.

2. Thus, a generic point P, is distant from its four neighbor points

to the north, south, east or west by n, s, e, or w, respectively, as

shown in Fig. 1. The coupled equations (2) are used to write the
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field equations around any one of the points Pi, two for each region

1, 2, 3, and 4, as shown in Fig. 1. These eight equations are sum-

marized in the following expression:

(4)

where

mia = w, e;
‘qT = n, s; Mia = W, E, Mq, = N, R

for a when r = y and mia = n, s; m~, = w., e;

Mi, =N, ~ Mq, =W, E, forry=ywhenr= x.

aez

‘Z’j = %l;
Ha,j = % ;

ar 1
Hwuj = %

aa j
withj = 1, 2, 3, 4

representing regions 1, 2, 3, and 4, shown in Fig. 1, respectively;

i and q correspond to the following values: (i, q) = (1, 1), (1, 2),

(2, 2), (2, 1) with a = x when ~ = y and (i, q) = (1, 1), (2, 1),

(2, 2), (1, 2) with a = y when ~ = x, for regions 1[, 2, 3, and 4

(Fig. 1), respectively.

At the interface between the four regions of the graded mesh of

five points, m shown in Fig. 1, the boundary conditions that re-

quire the continuity of the longitudinal components of the electric

field, Ez, and of the magnetic field, HZ, are then imposed. From

these conditions we obtain relations between the derivatives of the

transverse components of the magnetic field, HX and HY. From the

various sets of possible relations [5] we have chosen for HX, the

following: Ezl = E,z, EZ3 = E,a, HZl = Hz, J&3 = ~~z4, H~i = H24

and for HY we have chosen: Ezl = EZ4, EZ2 = EZ3, Hzl = HZ4,

%2 = %3, % = HZ2. As a result, similar expressions as those

given by Bierwirth et al. [5] are obtained.

The set of coupled equations (4), along with this set of relations

lead to the desired solution of the wave equation. After some ma-

nipulation of this set of equations, the following coupled equations

are obtained:

~ AiHXL + ,=w~~ s BiHyi + ApHXp + BpHyp
i= W, E,N, S .,,

i- y: APTH.P + Y: BPTHYP = 0,

~ CiHYi + ,=w~N~DtHXz + DpHXP + CpHYp
,cW,E,N,s ,,,

+ Y: DPYH.P + T: CPYHYP = 0>

(5)

(6)

where the coefficients Ai, Bi, Ci, Di (i = W, E, N, S), Ap, APT, Bp,

BPY, Cp, CPT, DP and Dpy are expressions given in terms of geo-

metrical parameters and the electromagnetic parameters of the di-

electric media.

The equations (5) and (6) may be uncoupled in terms of ~ ~Hxp
and y ~HYp. The result is

~ DiHXi + i=w~Ns CiHYi + DPHXP + CPHYP = –Y~Hw,
i= W, E,N, S ,,!

(7)

~ AiHXi + ,= w~Ns B’HY, + APHXPi- BPHYP= –y:Hxp,
i= W,E,N,S ,,,

(8)

where

A i = (A, Cyr – DiBm)/D; B’ = (Bi CP7– CiBPT)/D;

Ap = (ApCP7– DpBpy)/D; Bp = (BPCPY– CPBPY)/D;

D’ = (DiAPY _ AiDPv)/D; Ci = (CiAPY – BiDPY)/D;

Dp = (DPAPV-- ApDpT)/D; Cp = (CPAP7–’ BpDm)/D;

D = ApyCPT-- DPVBW. (9)

Note that, for the graded mesh of Fig. 2 containing N points, there

should be N unknowns Hxpand N unknowns Hyp, one for each point

P of the mesh. On the other hand, we may write one equation (7)

and one equation (8) for each mesh point, such that a total of 2N

equations will result from the use of (7) and (8) in the entire mesh.

.We have therefore an equal number of equations and unknowns.

Obviously, in order to be able to solve the numerical problem, N

has to be a finite number. This may be accomplished by confining

the cross section of the waveguide within electric or magnetic walls.

After defining the graded mesh of points of Fig. 2 and chosen

the walls that limit the waveguide cross section, (7) and (8) may

be invoked at ea~ch mesh point, using the proper boundary condi-

tions at the eleciric andlor magnetic walls. A system of linear ho-

mogeneous equations results that may be written as a conventional

eigenvalue problem [5], [6]:

[(A) - A(U)] (X) = O, (lo)

where k = –~ ~, (U) is the unit matrix, (X) is the eigenvector, and ,

(A) is a square matrix with coefficients a,,,, b,,,, c,,, and d,,,.

The eigenvalues A and the eigenvectors (X) may be obtained

using the Eispack program [5].

III. RESULTS

The formulation presented here is used in the analysis of the

propagation characteristics of an infinite array of rectangular di-

electric waveguides having a cross section as shown in Fig. 3. Note

that each rectangular dielect~c waveguide has dimensions a and b,

with a relative dielectric permittivity cc and a magnetic permeabil-

ity, PO. For an anisotropic dielectric, CCis a tensor quantity. The

medium that surrounds the rectangular dielectric waveguides is a

dielectric with a relative dielectric permittivity, E,, and a magnetic

permeability, PO. Due to the periodicity of the structure it is suffi-

cient that only one cell of the array be examined. This cell is shown

in Fig. 3 with sides A and B. Note, in addition, this cell has sym-

metry with resp(ect to the 2–3 and 3–4 axes. Therefore, only the

cell delimited by the points 1–2–3–4 has to be examined, with the

appropriate choice of electric or magnetic walls at the edges of this

cell. Depending on the choice of the walls along 2–3 and 3–4, four

mode groups ma~ybe formed. The first group is defined as the one

with an electric wall along 2–3 and a magnetic wall along 3–4. The

second and third-groups have only electric and only magnetic walls,
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Fig. 3. Cross section of an infinite array of rectangular
waveguides.
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Fig. 4. Normalized phase constant of the first five modes of the first group,

as a function of frequency. Also shown are results obtained by Yang et al.
[7]. e, = 1.0, 6C = 2.25, a = 2.324 cm, b = 1.162 cm, ,4 = 6.Ocm and
B = 3.0 cm.

respectively. The fourth group is obtained by exchanging the elec-

tric and magnetic walls of the first group [7].

The normalized phase constants as a function of frequency, ex-

pressed in GHz, are shown in Figs. 4 and 5 for the first and fourth

groups, respectively. For both cases, isotropic dielectrics were

used, with c1 = 1.0 and CC= 2.25 and the dimensions were chosen

asa = 2.324 cm, b = 1.162 cm, A = 6.0 cmandli = 3.Ocm [7].

The first five modes are shown with solid lines. Results obtained

by Yang et al. [7] using the integral equation method are also shown

with dots. Note the agreement observed with the comparison of

both results.

In order to examine the effect of dielectric anisotropy, the rect-

angular dielectric waveguides with EC = 2.19 were replaced by

uniaxial anisotropic dielectrics with the optical axis along the

y-direction. For one case we have chosen eCX= eCZ= 2.31 and

eCY= 2.19 and forthe other case, CC.= CCZ= 2.19 and CC}= 2.31.

The results are shown in Fig. 6. Note that, for ecY = 2.31 (aster-

isks), the results almost coincide with those for CC= 2.19 (solid

line). For eCY= 2.19 (dotted line) the normalized phase constants

are slightly higher than those for EC= 2.19. Not shown in Fig. 6

are the results that were calculated for the optical axis along the x

direction and with ECY= CC,= 2.19 and eCX= 2.31. These results

1.0 : .

(~lko)

0,5

0.0
0 5 10 15 20

Frequency in GHz

Fig. 5. Same as in Fig. 4, for the fourth group instead of the first group.
Also shown are results obtained by Yang et al. [7].
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Fig. 6. Normalized phase constant of the first two modes of the first group,

as a function of frequency for: (a) isotropic dielectric waveguides with
e, = 2.19 (solid line); (b) an isotropic dielectric waveguides with e,=,. =
2.31 and~c,, = 2.19 (dotted line); and (c) anisotropic dielectric waveguides

with e.,,, = 2.19 and 6., = 2.31 (asterisks). c1 = 1.0, a = 2.324 cm, b

= 1.162 cm, A = 6.0crnandl? = 3.0 cm.

were very similar to those calculated for Ccx = cc: = 2.31 and

ECy = 2.19.

IV. CONCLUSION

The dispersion characte~istics of an infinite array of rectangular

dielectric waveguides, using isotropic or anisotropic dielectrics

were examined using the finite-difference method. In the formula-

tion the vector wave equation, written in terms of the transverse

components of the magnetic field, is reduced to a conventional ei-

genvalue problem. The elimination of spurious modes is accom-

plished by including the condition that the divergence of the mag-

netic field is equal to zero. The results obtained for isotropic

dielectrics were compared with those obtained using the integral

equation method and good agreement was observed for the first five

modes.
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Analysis of Coupling in Image Guide Technology

D. L. Paul, M. Habibi, J. Castrillo, Ph. Gelin, and S. Toutain

Afastraet-.Coup1ing for symmetrical and asymmetrical structures in

image guide technology is described. Starting from Triinh and Mittra’s

analysis, we propose some improvements for treating strong coupling

between an image guide and a ring resonator of any radius of curva-

ture, by taking into account the field displacement effect, and for a

nonsymmetric coupler, the difference bet weem the propagation con-

stants of the straight and curved image guides. A comparison between
this analysis and Triuh and Mittra’s experiments has been made.

I. INTRODUCTION

In recent years, greater interest has been paid to millimeter-wave

dielectric propagation media for use both in active and passive de-

vices [1]. I)erived from guides widely used in optics, these struc-

tures are indeed well suited to high frequency bands. When asso-

ciated with dielectric ti”ng resonators, dielectric waveguides are

especially suitable for the modelling of filters [2]. In order to de-

sign filters in image guide technology at millimeter wavelengths,

it is necessaay to characterize accurately the coupling between basic

elements.

This paper presents numerous improvements which can be ap-

plied to the analysis proposed by Trinh and Mittra for symmetric

and nonsymmetnc couplers [3] and which are able to predict both

the amplitude and the phase of the scattering parameters without

any restrictive assumption. To do this, the analysis takes into ac-

count not only the shift of the electromagnetic field due to the cur-

vature of the guide but also, in the case of nonsymrnetric couplers,

the difference in the propagation constants between curved and

straight guides. A slight concordance is observed between our the-

ory and Trinh and Mittra’s experimental results.
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Fig. 1. Scattering coefficients in the case of a symmetric coupler.

II. TRINH AND MITTRA’S ANALYSIS

In the case of a symmetric coupler (Fig. 1), this approach is able

to predict scattering coefficients with quite satisfactory accuracy.

Their theory is based on three assumptions:

a) The authors assume the radius R to be large enough compared

to the wavelength, to neglect the field displacement in the curved

structures [4] and approximate the phase constant in this section by

the one obtained in a straight section.

b) They use the generalized EDC method (Effective Dielectric

Constant) to obtain both the phase constant of the single image

guide fundamental mode and the even and odd phase constants of

coupled image guides.

c) They sup]pose that the coupling is weak. From a mathematical

point of view, ‘this assumption permits the use of analytical asymp-

totic equations to derive the even and odd phase constants of the

coupler.

To analyze the validity of these hypotheses, we plotted (Fig. 1)

the S-parameters versus the spacing between guides for each com-

bination of the techniques available, i.e., for both strong (resolu-

tion of Knox and Toulios’s transcendental equations [5]) and weak

coupling. This figure shows that the results may be very different

according to the technique chosen (EDC [5] or generalized EDC

method [3]) and that paradoxically Trinh and Mittra’s experiments

and theoretical results (curve 4, Fig. 1) agree well for strong cou-

pling where the asymptotic equations are not valid.

When applied to a nonsymmetric coupler, the main drawback of

Trinh and Mittrn’s model lies in the necessity of introducing a cor-

rection factor into the calculations to model the phase constant dif-

ference between straight and curved guides.

Concluding Remark: If the assumption of “weak coupling” in

Knox and Toulios’s transcendental equations leads to fairly good

results concerning symmetric couplers, this may ztot be significant.

Indeed, the excess of coupling obtained when the distance between

guides is supposed to be infinite may make UP for the omission of

the shift of the maximum field amplitude towards the outside of the

guide observed, in curved structures [4].

Thus, it seems more realistic to take into account this physical

phenomenon without assuming a weak coupling approximation and,

in the case of nonsymmetric couplers, the difference in propagation
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